Contenido principal del artículo

M Mallol
College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia y Departamento de Educación Física y Deportiva, Facultad de Educación y Deporte, Universidad del País Vasco (UPV-EHU), Vitoria-Gasteiz
Australia
G Mejuto
Departamento de Didáctica de la Expresión Musical, Plástica y Corporal, Facultad de Educación, Universidad del País Vasco (UPV-EHU), Bilbao
España
D.J. Bentley
Health and Exercise Science, College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia y Canadian Sports Institute Ontario, Scarborough, Toronto, Ontario,
Canadá
L Norton
Health and Exercise Science, College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia
Australia
K Norton
School of Health Sciences, University of South Australia, Adelaide, South Australia
Australia
J Yanci
Departamento de Educación Física y Deportiva, Facultad de Educación y Deporte, Universidad del País Vasco (UPV-EHU), Vitoria-Gasteiz
España
Vol. 9 Núm. 1 (2020): ., Artículos, Páginas 35-52
DOI: https://doi.org/10.24310/riccafd.2020.v9i1.8300
Derechos de autor

Resumen

Los objetivos de este estudio fueron analizar las diferencias entre triatletas masculinos y femeninos amateurs en el rendimiento en un test incremental máximo y en una competición simulada y describir si existe asociación entre el rendimiento en el test máximo incremental y la prueba simulada de competición. Un total de catorce triatletas recreacionales, 8 mujeres (35,0  8,1  años; 166,8  7,2  cm; 69,4  14,6 kg; 24,7  3,2 kg.m-2) y 6 hombres (47,7  14,3  años; 179,9  8,6  cm; 77,8  5,8  kg; 24,0  1,3 kg.m-2) realizaron un test incremental máximo y en una competición simulada (20 km bici y 5 km carrera a pie). A pesar de que no se observaron diferencias significativas entre el grupo masculino y femenino en el test máximo incremental, a efectos prácticos, el grupo masculino obtuvo valores mayores para VO2max, Pmax, PVT1, PVT2 y VO2VT2 (p > 0,05, ES = -0,8 a -1.9, alto). Con respecto a la competición simulada, si bien no se obtuvieron diferencias en función de sexo en los 5 km de carrera, el grupo femenino obtuvo valores significativamente inferiores para las variables velocidad (media y máxima) (p < 0,05 y p < 0,01, ES = -1,3- -4,1, alto) y potencia (media y máxima) (p < 0,01, ES = -2.4- -2.8, alto) durante los 20 km de ciclismo, así como un tiempo de ejecución del sector ciclista significativamente mayor que el grupo masculino (p < 0,01, ES = 1,6, alto).  Por otro lado, un mejor rendimiento durante el test máximo incremental se asoció a un mejor rendimiento durante los 20 km de ciclismo en el grupo masculino (r = 0,848, p < 0,05), mientras que en el grupo femenino se asoció tanto a los 20 km en bici como a los 5 km corriendo (r = -0,714 a -0,822, p < 0,05). Los resultados obtenidos en el estudio ponen de manifiesto que los triatletas masculinos tienen un mejor rendimiento en un test incremental máximo y en el sector bici en una competición simulada y que la asociación entre el rendimiento en un test incremental y el rendimiento en los sectores de la prueba simulada depende del sexo.

Detalles del artículo

Referencias

1. International Triathlon Union. Competition rules documents 2018 [Available from: https://www.triathlon.org/about/downloads/category/competition_rules.
2. Millet GP, Bentley DJ. The physiological responses to running after cycling in elite junior and senior triathletes. International Journal of Sports Medicine. 2004;25(03):191-7.
3. Schabort EJ, Killian SC, Gibson ASC, Hawley JA, Noakes TD. Prediction of triachlon race time from laboratory testing in national triathletes. Medicine and Science in Sports and Exercise. 2000;32(4):844-9.
4. Sleivert GG, Wenger HA. Physiological predictors of short-course triathlon performance. Medicine and Science in Sports and Exercise. 1993;25(7):871-6.
5. Etxebarria N, Anson JM, Pyne DB, Ferguson RA. High-intensity cycle interval training improves cycling and running performance in triathletes. European Journal of Sport Science. 2014;14(6):521-9.
6. Consejo Superior de Deportes. Memoria 2017: Licencias y clubes federados 2019 [Available from: http://www.csd.gob.es/csd/estaticos/asoc-fed/licencias_y_clubes_2017.pdf.
7. Etxebarria N, Hunt J, Ingham S, Ferguson R. Physiological assessment of isolated running does not directly replicate running capacity after triathlon-specific cycling. Journal of Sports Sciences. 2014;32(3):229-38.
8. Nagy E, Toth K, Janositz G, Kovacs G, Feher-Kiss A, Angyan L, et al. Postural control in athletes participating in an ironman triathlon. European Journal of Applied Physiology. 2004;92(4-5):407-13.
9. Laursen PB, Suriano R, Quod MJ, Lee H, Abbiss CR, Nosaka K, et al. Core temperature and hydration status during an Ironman triathlon. British Journal of Sports Medicine. 2006;40(4):320-5.
10. Suzuki K, Peake J, Nosaka K, Okutsu M, Abbiss CR, Surriano R, et al. Changes in markers of muscle damage, inflammation and HSP70 after an Ironman Triathlon race. European Journal of Applied Physiology. 2006;98(6):525-34.
11. Margaritis I, Tessier F, Richard M-J, Marconnet P. No evidence of oxidative stress after a triathlon race in highly trained competitors. International Journal of Sports Medicine. 1997;18(03):186-90.
12. Hopker J, Jobson S, Carter H, Passfield L. Cycling efficiency in trained male and female competitive cyclists. Journal of Sports Science & Medicine. 2010;9(2):332.
13. Kennedy MD, Tamminen KA, Holt NL. Factors that influence fatigue status in Canadian university swimmers. Journal of Sports Sciences. 2013;31(5):554-64.
14. Hoffmann S, Skinner T, van Rosendal S, Osborne M, Emmerton L, Jenkins D. Sex differences in adaptations to high intensity interval training. Journal of Science and Medicine in Sport. 2017;20:e18.
15. Helgerud J, Ingjer F, Strømme S. Sex differences in performance-matched marathon runners. European Journal of Applied Physiology and Occupational Physiology. 1990;61(5-6):433-9.
16. Machado FA, Kravchychyn ACP, Peserico CS, da Silva DF, Mezzaroba PV. Incremental test design, peak ‘aerobic’running speed and endurance performance in runners. Journal of Science and Medicine in Sport. 2013;16(6):577-82.
17. Lindsay FH, Hawley JA, Myburgh KH, Schomer HH, Noakes TD, Dennis SC. Improved athletic performance in highly trained cyclists after interval training. Medicine and Science in Sports and Exercise. 1996;28(11):1427-34.
18. Westgarth-Taylor C, Hawley JA, Rickard S, Myburgh KH, Noakes TD, Dennis SC. Metabolic and performance adaptations to interval training in endurance-trained cyclists. European Journal of Applied Physiology and Occupational Physiology. 1997;75(4):298-304.
19. Lepers R, Knechtle B, Stapley PJ. Trends in triathlon performance: Effects of sex and age. Sports Medicine. 2013;43(9):851-63.
20. Basset FA, Boulay MR. Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. European Journal of Applied Physiology. 2000;81(3):214-21.
21. Gore C, Norton K, Olds T, Whittingham N, Birchall K, Clough M, et al. Accreditation in anthropometry: an Australian model. Anthropometrica. 1996:395-411.
22. Norton K, Olds T, Olive S, Craig N. Anthropometry and sports performance. Anthropometrica. 1996:287-364.
23. Bentley DJ, Newell J, Bishop D. Incremental exercise test design and analysis. Sports Medicine. 2007;37(7):575-86.
24. Bentley DJ, Vleck VE, Millet GP. The isocapnic buffering phase and mechanical efficiency: relationship to cycle time trial performance of short and long duration. Canadian Journal of Applied Physiology. 2005;30(1):46-60.
25. Chicharro JL, Hoyos J, Lucía A. Effects of endurance training on the isocapnic buffering and hypocapnic hyperventilation phases in professional cyclists. British Journal of Sports Medicine. 2000;34(6):450-5.
26. International Triathlon Union. Triathlon 2018, April 17 [Available from: https://www.triathlon.org/.
27. Borg GA. Psychophysical bases of perceived exertion. Med sci sports exerc. 1982;14(5):377-81.
28. Cohen J. Statistical power analysis for the behavioural sciences. Hillsdale, NJ: erlbaum; 1988.
29. Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Medicine Science in Sports Exercise. 2009;41(1):3.
30. Stevenson JL, Song H, Cooper JA. Age and sex differences pertaining to modes of locomotion in triathlon. Medicine and Science in Sports and Exercise. 2013;45(5):976-84.
31. Sandbakk Ø, Ettema G, Leirdal S, Holmberg H-C. Gender differences in the physiological responses and kinematic behaviour of elite sprint cross-country skiers. European Journal of Applied Physiology. 2012;112(3):1087-94.
32. Maughan R, Leiper J. Aerobic capacity and fractional utilisation of aerobic capacity in elite and non-elite male and female marathon runners. European Journal of Applied Physiology and Occupational Physiology. 1983;52(1):80-7.
33. Reaburn PR, Dascombe BJ, Janse de Jonge X. Body composition and gender differences in performance. Nutritionnal Assesement of Athletes, Second Edition, Driskell JA, Wolinsky I, Eds CRC Press, Boca Raton, FL. 2011:121-47.
34. Bunc V, Heller J, Horcic J, Novotny J. Physiological profile of best Czech male and female young triathletes. The Journal of Sports Medicine and Physical Fitness. 1996;36(4):265-70.
35. Neder J, Nery L, Andreoni S, Sachs A, Whipp B. Oxygen cost for cycling as related to leg mass in males and females, aged 20 to 80. International Journal of Sports Medicine. 2000;21(04):263-9.
36. Sleivert GG, Rowlands DS. Physical and physiological factors associated with success in the triathlon. Sports Medicine. 1996;22(1):8-18.